Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Front Vet Sci ; 11: 1328293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601913

RESUMO

Brucellosis is a worldwide extended zoonosis caused by pathogens of the genus Brucella. While most B. abortus, B. melitensis, and B. suis biovars grow slowly in complex media, they multiply intensely in livestock genitals and placenta indicating high metabolic capacities. Mutant analyses in vitro and in infection models emphasize that erythritol (abundant in placenta and genitals) is a preferred substrate of brucellae, and suggest hexoses, pentoses, and gluconeogenic substrates use in host cells. While Brucella sugar and erythritol catabolic pathways are known, growth on 3-4 carbon substrates persists in Fbp- and GlpX-deleted mutants, the canonical gluconeogenic fructose 1,6-bisphosphate (F1,6bP) bisphosphatases. Exploiting the prototrophic and fast-growing properties of B. suis biovar 5, we show that gluconeogenesis requires fructose-bisphosphate aldolase (Fba); the existence of a novel broad substrate bisphosphatase (Bbp) active on sedoheptulose 1,7-bisphosphate (S1,7bP), F1,6bP, and other phosphorylated substrates; that Brucella Fbp unexpectedly acts on S1,7bP and F1,6bP; and that, while active in B. abortus and B. melitensis, GlpX is disabled in B. suis biovar 5. Thus, two Fba-dependent reactions (dihydroxyacetone-phosphate + glyceraldehyde 3-phosphate ⇌ F1,6bP; and dihydroxyacetone-phosphate + erythrose 4-phosphate ⇌ S1,7bP) can, respectively, yield fructose 6-phosphate and sedoheptulose 7-phosphate for classical gluconeogenesis and the Pentose Phosphate Shunt (PPS), the latter reaction opening a new gluconeogenic route. Since erythritol generates the PPS-intermediate erythrose 4-phosphate, and the Fba/Fbp-Bbp route predicts sedoheptulose 7-phosphate generation from erythrose 4-phosphate, we re-examined the erythritol connections with PPS. Growth on erythritol required transaldolase or the Fba/Fbp-Bbp pathway, strongly suggesting that Fba/Fbp-Bbp works as a PPS entry for both erythritol and gluconeogenic substrates in Brucella. We propose that, by increasing erythritol channeling into PPS through these peculiar routes, brucellae proliferate in livestock genitals and placenta in the high numbers that cause abortion and infertility, and make brucellosis highly contagious. These findings could be the basis for developing attenuated brucellosis vaccines safer in pregnant animals.

2.
Microorganisms ; 11(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630630

RESUMO

One Health is the collaborative efforts of multiple disciplines to attain optimal health for people, animals and the environment, a concept that historically owes much to the study of brucellosis, including recent political and ethical considerations. Brucellosis One Health actors include Public Health and Veterinary Services, microbiologists, medical and veterinary practitioners and breeders. Brucellosis awareness, and the correct use of diagnostic, epidemiological and prophylactic tools is essential. In brucellosis, One Health implementation faces inherited and new challenges, some aggravated by global warming and the intensification of breeding to meet growing food demands. In endemic scenarios, disease awareness, stakeholder sensitization/engagement and the need to build breeder trust are unresolved issues, all made difficult by the protean characteristics of this zoonosis. Extended infrastructural weaknesses, often accentuated by geography and climate, are critically important. Capacity-building faces misconceptions derived from an uncritical adoption of control/eradication strategies applied in countries with suitable means, and requires additional reference laboratories in endemic areas. Challenges for One Health implementation include the lack of research in species other than cattle and small ruminants, the need for a safer small ruminant vaccine, the need to fill in the infrastructure gap, the need for realistic capacity-building, the creation of reference laboratories in critical areas, and the stepwise implementation of measures not directly transposed from the so-called developed countries.

3.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37395662

RESUMO

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Assuntos
Brucella , Ochrobactrum , Ochrobactrum/classificação , Ochrobactrum/genética , Ochrobactrum/patogenicidade , Ochrobactrum/fisiologia , Brucella/classificação , Brucella/genética , Brucella/patogenicidade , Brucella/fisiologia , Terminologia como Assunto , Filogenia , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Humanos , Infecções Oportunistas/microbiologia
4.
EMBO J ; 42(14): e112817, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232029

RESUMO

The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.


Assuntos
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Vacúolos/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias
5.
Pathogens ; 11(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335701

RESUMO

The intracellular pathogens of the genus Brucella are phylogenetically close to Ochrobactrum, a diverse group of free-living bacteria with a few species occasionally infecting medically compromised patients. A group of taxonomists recently included all Ochrobactrum organisms in the genus Brucella based on global genome analyses and alleged equivalences with genera such as Mycobacterium. Here, we demonstrate that such equivalencies are incorrect because they overlook the complexities of pathogenicity. By summarizing Brucella and Ochrobactrum divergences in lifestyle, structure, physiology, population, closed versus open pangenomes, genomic traits, and pathogenicity, we show that when they are adequately understood, they are highly relevant in taxonomy and not unidimensional quantitative characters. Thus, the Ochrobactrum and Brucella differences are not limited to their assignments to different "risk-groups", a biologically (and hence, taxonomically) oversimplified description that, moreover, does not support ignoring the nomen periculosum rule, as proposed. Since the epidemiology, prophylaxis, diagnosis, and treatment are thoroughly unrelated, merging free-living Ochrobactrum organisms with highly pathogenic Brucella organisms brings evident risks for veterinarians, medical doctors, and public health authorities who confront brucellosis, a significant zoonosis worldwide. Therefore, from taxonomical and practical standpoints, the Brucella and Ochrobactrum genera must be maintained apart. Consequently, we urge researchers, culture collections, and databases to keep their canonical nomenclature.

6.
Gac. med. boliv ; 45(2)2022.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1430360

RESUMO

Objetivos: El muestreo de hisopado nasofaríngeo para la detección de SARS CoV-2 es un método estándar para el diagnóstico de COVID-19, pero su recolección generalmente ocasiona incomodidad en el paciente y expone a un mayor riesgo al personal de salud. La muestra de saliva parece ser una buena alternativa con respecto a las muestras de hisopado nasofaringeo, no es invasiva, reduce el riesgo de contaminación del personal sanitario y permite la auto recolección. Este estudio tiene por objetivo comparar la capacidad de detectar al SARS CoV-2 por RT-PCR en un mismo paciente, a partir de muestras de saliva y de hisopado nasofaríngeo para analizar la concordancia de los resultados obtenidos entre ambas muestras. Métodos: Treinta muestras de saliva y de HNF de pacientes con síntomas de COVID-19 que ingresaron al servicio de emergencia del Hospital Clínico Viedma fueron tomadas en paralelo. Ambas muestras fueron analizadas por RT-PCR para la detección de SARS CoV-2. La concordancia de resultados fue calculada por el coeficiente de kappa de Cohen. Resultados: Nuestros resultados muestran que existe una buena concordancia (Índice Kappa 0,730; IC del 95%: 0,486 - 0,974) entre los dos tipos de muestras analizadas. Conclusiones: La saliva parece ser una muestra fiable y efectiva para la detección del SARS CoV-2.


Objectives: Nasopharyngeal swab sampling for the detection of SARS-CoV-2 is a standard method for the diagnosis of COVID-19, but its collection usually causes discomfort in the patient and exposes healthcare workers to a higher risk. Saliva seems to be a good alternative to nasopharyngeal swabs, as it is non-invasive, reduces the risk of contamination of healthcare workers, and allows self-collection. This study aims to compare the ability to detect SARS-CoV-2 by RT-PCR in the same patient using saliva and nasopharyngeal swab samples to analyze the concordance of the results obtained between the two samples. Methods: Thirty saliva and nasopharyngeal swab samples from patients with COVID-19 symptoms who were admitted to the emergency department of the Viedma Clinical Hospital were taken in parallel. Both samples were analyzed by RT-PCR for the detection of SARS-CoV-2. The concordance of results was calculated using the Cohen's Kappa coefficient. Results: Our results show that there is good concordance (Kappa index 0.730; 95% CI: 0.486-0.974) between the two types of samples analyzed. Conclusions: Saliva seems to be a reliable and effective sample for the detection of SARS-CoV-2.

7.
Sci Rep ; 11(1): 5960, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727580

RESUMO

This study aimed to consolidate current knowledge of wildlife brucellosis in Africa and to analyse available predictors of infection. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Information on species, test used, test results, area, rainfall, livestock and wildlife contact and year of study were extracted. This systematic review revealed 42 prevalence studies, nine disease control articles and six articles on epidemiology. Brucella abortus, Brucella melitensis, Brucella inopinata and Brucella suis were reported in wildlife. The prevalence studies revealed serological evidence of brucellosis in buffalo, antelope (positive in 14/28 species), carnivores (4/12) and other species (7/20) over the last five decades. Buffalo populations were more likely to be infected and had a higher seroprevalence than other species; the pooled seroprevalence was 13.7% (95% CI 10.3-17.3%) in buffalo, 7.1% (95% CI 1.1-15.5%) in carnivores and 2.1% (95% CI 0.1-4.9%) in antelope. Wildlife in high rainfall areas (≥ 800 mm) were more likely to be infected, and infected populations showed higher seroprevalence in high rainfall areas and in studies published after 2000. Domestic animal contact was associated with increased seroprevalence in antelope and carnivore species, but not in buffalo, supporting the hypothesis that buffalo may be a reservoir species.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/microbiologia , Animais Selvagens , Brucella , Brucelose/veterinária , África/epidemiologia , Doenças dos Animais/transmissão , Animais , Vetores Aracnídeos/microbiologia , Estudos Transversais , Interações Hospedeiro-Patógeno , Análise Multivariada , Vigilância em Saúde Pública , Estudos Soroepidemiológicos , Carrapatos/microbiologia , Zoonoses
8.
Proc Natl Acad Sci U S A ; 117(42): 26374-26381, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020286

RESUMO

Mechanistic understanding of the factors that govern host tropism remains incompletely understood for most pathogens. Brucella species, which are capable of infecting a wide range of hosts, offer a useful avenue to address this question. We hypothesized that metabolic fine-tuning to intrahost niches is likely an underappreciated axis underlying pathogens' ability to infect new hosts and tropism. In this work, we compared the central metabolism of seven Brucella species by stable isotopic labeling and genetics. We identified two functionally distinct groups, one overlapping with the classical zoonotic species of domestic livestock that exclusively use the pentose phosphate pathway (PPP) for hexose catabolism, whereas species from the second group use mostly the Entner-Doudoroff pathway (EDP). We demonstrated that the metabolic dichotomy among Brucellae emerged after the acquisition of two independent EDP-inactivating mutations in all classical zoonotic species. We then examined the pathogenicity of key metabolic mutants in mice and confirmed that this trait is tied to virulence. Altogether, our data are consistent with the hypothesis that the PPP has been incrementally selected over the EDP in parallel to Brucella adaptation to domestic livestock.


Assuntos
Brucella/genética , Brucella/metabolismo , Via de Pentose Fosfato/genética , Adaptação Biológica/genética , Animais , Zoonoses Bacterianas/genética , Evolução Biológica , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Via de Pentose Fosfato/fisiologia , Fenótipo , Virulência
9.
Front Microbiol ; 11: 620049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519781

RESUMO

Brucella species cause brucellosis, a worldwide extended zoonosis. The brucellae are related to free-living and plant-associated α2-Proteobacteria and, since they multiply within host cells, their metabolism probably reflects this adaptation. To investigate this, we used the rodent-associated Brucella suis biovar 5, which in contrast to the ruminant-associated Brucella abortus and Brucella melitensis and other B. suis biovars, is fast-growing and conserves the ancestral Entner-Doudoroff pathway (EDP) present in the plant-associated relatives. We constructed mutants in Edd (glucose-6-phosphate dehydratase; first EDP step), PpdK (pyruvate phosphate dikinase; phosphoenolpyruvate ⇌ pyruvate), and Pyk (pyruvate kinase; phosphoenolpyruvate → pyruvate). In a chemically defined medium with glucose as the only C source, the Edd mutant showed reduced growth rates and the triple Edd-PpdK-Pyk mutant did not grow. Moreover, the triple mutant was also unable to grow on ribose or xylose. Therefore, B. suis biovar 5 sugar catabolism proceeds through both the Pentose Phosphate shunt and EDP, and EDP absence and exclusive use of the shunt could explain at least in part the comparatively reduced growth rates of B. melitensis and B. abortus. The triple Edd-PpdK-Pyk mutant was not attenuated in mice. Thus, although an anabolic use is likely, this suggests that hexose/pentose catabolism to pyruvate is not essential for B. suis biovar 5 multiplication within host cells, a hypothesis consistent with the lack of classical glycolysis in all Brucella species and of EDP in B. melitensis and B. abortus. These results and those of previous works suggest that within cells, the brucellae use mostly 3 and 4 C substrates fed into anaplerotic pathways and only a limited supply of 5 and 6 C sugars, thus favoring the EDP loss observed in some species.

10.
Front Immunol ; 10: 1589, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354728

RESUMO

Live attenuated vaccines play a key role in the control of many human and animal pathogens. Their rational development is usually helped by identification of the reservoir of infection, the lymphoid subpopulations associated with protective immunity as well as the virulence genes involved in pathogen persistence. Here, we compared the course of Brucella melitensis infection in C57BL/6 mice infected via intraperitoneal (i.p.), intranasal (i.n.) and intradermal (i.d.) route and demonstrated that the route of infection strongly impacts all of these parameters. Following i.p. and i.n. infection, most infected cells observed in the spleen or lung were F4/80+ myeloid cells. In striking contrast, infected Ly6G+ neutrophils and CD140a+ fibroblasts were also observed in the skin after i.d. infection. The virB operon encoding for the type IV secretion system is considered essential to deflecting vacuolar trafficking in phagocytic cells and allows Brucella to multiply and persist. Unexpectedly, the ΔvirB Brucella strain, which does not persist in the lung after i.n. infection, persists longer in skin tissues than the wild strain after i.d. infection. While the CD4+ T cell-mediated Th1 response is indispensable to controlling the Brucella challenge in the i.p. model, it is dispensable for the control of Brucella in the i.d. and i.n. models. Similarly, B cells are indispensable in the i.p. and i.d. models but dispensable in the i.n. model. γδ+ T cells appear able to compensate for the absence of αß+ T cells in the i.d. model but not in the other models. Taken together, our results demonstrate the crucial importance of the route of infection for the host pathogen relationship.


Assuntos
Brucella melitensis/imunologia , Brucelose/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos Intraepiteliais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Células Th1/imunologia , Vacinas Atenuadas/imunologia , Virulência/imunologia
11.
Front Immunol ; 9: 1856, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147700

RESUMO

Allergic asthma is a chronic Th2 inflammatory disease of the lower airways affecting a growing number of people worldwide. The impact of infections and microbiota composition on allergic asthma has been investigated frequently. Until now, however, there have been few attempts to investigate the impact of asthma on the control of infectious microorganisms and the underlying mechanisms. In this work, we characterize the consequences of allergic asthma on intranasal (i.n.) infection by Brucella bacteria in mice. We observed that i.n. sensitization with extracts of the house dust mite Dermatophagoides farinae or the mold Alternaria alternata (Alt) significantly increased the number of Brucella melitensis, Brucella suis, and Brucella abortus in the lungs of infected mice. Microscopic analysis showed dense aggregates of infected cells composed mainly of alveolar macrophages (CD11c+ F4/80+ MHCII+) surrounded by neutrophils (Ly-6G+). Asthma-induced Brucella susceptibility appears to be dependent on CD4+ T cells, the IL-4/STAT6 signaling pathway and IL-10, and is maintained in IL-12- and IFN-γR-deficient mice. The effects of the Alt sensitization protocol were also tested on Streptococcus pneumoniae and Mycobacterium tuberculosis pulmonary infections. Surprisingly, we observed that Alt sensitization strongly increases the survival of S. pneumoniae infected mice by a T cell and STAT6 independent signaling pathway. In contrast, the course of M. tuberculosis infection is not affected in the lungs of sensitized mice. Our work demonstrates that the impact of the same allergic sensitization protocol can be neutral, negative, or positive with regard to the resistance of mice to bacterial infection, depending on the bacterial species.


Assuntos
Asma/imunologia , Brucella/fisiologia , Brucelose/imunologia , Linfócitos T CD4-Positivos/imunologia , Hipersensibilidade/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Alternaria/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Antígenos de Fungos/imunologia , Asma/microbiologia , Dermatophagoides farinae/imunologia , Hipersensibilidade/microbiologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Pulmão/microbiologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais
12.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844240

RESUMO

Brucella abortus is a class III zoonotic bacterial pathogen able to survive and replicate inside host cells, including macrophages. Here we report a multidimensional transposon sequencing analysis to identify genes essential for Brucella abortus growth in rich medium and replication in RAW 264.7 macrophages. The construction of a dense transposon mutant library and mapping of 929,769 unique mini-Tn5 insertion sites in the genome allowed identification of 491 essential coding sequences and essential segments in the B. abortus genome. Chromosome II carries a lower proportion (5%) of essential genes than chromosome I (19%), supporting the hypothesis of a recent acquisition of a megaplasmid as the origin of chromosome II. Temporally resolved transposon sequencing analysis as a function of macrophage infection stages identified 79 genes with a specific attenuation phenotype in macrophages, at either 2, 5, or 24 h postinfection, and 86 genes for which the attenuated mutant phenotype correlated with a growth defect on plates. We identified 48 genes required for intracellular growth, including the virB operon, encoding the type IV secretion system, which supports the validity of the screen. The remaining genes encode amino acid and pyrimidine biosynthesis, electron transfer systems, transcriptional regulators, and transporters. In particular, we report the need of an intact pyrimidine nucleotide biosynthesis pathway in order for B. abortus to proliferate inside RAW 264.7 macrophages.


Assuntos
Brucella abortus/crescimento & desenvolvimento , Brucella abortus/genética , Elementos de DNA Transponíveis , Genes Bacterianos , Genes Essenciais , Macrófagos/microbiologia , Mutagênese Insercional , Animais , Mapeamento Cromossômico , Meios de Cultura/química , Redes e Vias Metabólicas/genética , Camundongos , Células RAW 264.7 , Análise de Sequência de DNA , Fatores de Virulência/genética
13.
Sci Rep ; 8(1): 5173, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581535

RESUMO

Mitochondria are complex organelles that participate in many cellular functions, ranging from ATP production to immune responses against viruses and bacteria. This integration of a plethora of functions within a single organelle makes mitochondria a very attractive target to manipulate for intracellular pathogens. We characterised the crosstalk that exists between Brucella abortus, the causative agent of brucellosis, and the mitochondria of infected cells. Brucella replicates in a compartment derived from the endoplasmic reticulum (ER) and modulates ER functionality by activating the unfolded protein response. However, the impact of Brucella on the mitochondrial population of infected cells still requires a systematic study. We observed physical contacts between Brucella containing vacuoles and mitochondria. We also found that B. abortus replication is independent of mitochondrial oxidative phosphorylation and that mitochondrial reactive oxygen species do not participate to the control of B. abortus infection in vitro. We demonstrated that B. abortus and B. melitensis induce a drastic mitochondrial fragmentation at 48 hours post-infection in different cell types, including myeloid and non-myeloid cells. This fragmentation is DRP1-independent and might be caused by a deficit of mitochondrial fusion. However, mitochondrial fragmentation does not change neither Brucella replication efficiency, nor the susceptibility of infected cells to TNFα-induced apoptosis.


Assuntos
Brucella abortus/genética , Brucelose/genética , Dinaminas/genética , Fator de Necrose Tumoral alfa/genética , Animais , Apoptose/genética , Brucella abortus/patogenicidade , Brucelose/microbiologia , Brucelose/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/microbiologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/microbiologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/genética , Vacúolos/genética
14.
J Cell Sci ; 131(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361547

RESUMO

Entry of the facultative intracellular pathogen Brucella into host cells results in the formation of endosomal Brucella-containing vacuoles (eBCVs) that initially traffic along the endocytic pathway. eBCV acidification triggers the expression of a type IV secretion system that translocates bacterial effector proteins into host cells. This interferes with lysosomal fusion of eBCVs and supports their maturation to replicative Brucella-containing vacuoles (rBCVs). Bacteria replicate in rBCVs to large numbers, eventually occupying most of the cytoplasmic volume. As rBCV membranes tightly wrap each individual bacterium, they are constantly being expanded and remodeled during exponential bacterial growth. rBCVs are known to carry endoplasmic reticulum (ER) markers; however, the relationship of the vacuole to the genuine ER has remained elusive. Here, we have reconstructed the 3-dimensional ultrastructure of rBCVs and associated ER by correlative structured illumination microscopy (SIM) and focused ion beam/scanning electron microscopic tomography (FIB/SEM). Studying B. abortus-infected HeLa cells and trophoblasts derived from B. melitensis-infected mice, we demonstrate that rBCVs are complex and interconnected compartments that are continuous with neighboring ER cisternae, thus supporting a model that rBCVs are extensions of genuine ER.


Assuntos
Brucella abortus/ultraestrutura , Brucella melitensis/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Vacúolos/ultraestrutura , Animais , Brucella abortus/patogenicidade , Brucella melitensis/patogenicidade , Citoplasma/microbiologia , Retículo Endoplasmático/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Trofoblastos/microbiologia , Trofoblastos/ultraestrutura , Sistemas de Secreção Tipo IV/ultraestrutura , Vacúolos/microbiologia
15.
Trop Anim Health Prod ; 50(4): 903-906, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29274056

RESUMO

This study shows the absence of the world's most common bacterial zoonoses caused by Brucella abortus and Brucella melitensis in cattle, goats and dogs in an agro-pastoral community in South Africa, where heifer vaccination against brucellosis with the live Strain 19 vaccine is compulsory. The study site is bordering wildlife reserves with multiple wildlife species infected with brucellosis. The results showed a low seroprevalence (1.4%) in cattle. Seroprevalence in cattle decreased with age after 4 years in females, males were less positive than females and a tissue culture from a brucellin skin test-positive male was negative. The results indicate that Brucella seropositivity in cattle is due to S19 vaccination and not natural infections. This conclusion is reinforced by the absence of Brucella seropositivity in goats (1/593 positive result) and dogs (0/315), which can be seen as potential spillover hosts. Therefore, the close proximity of brucellosis-infected wildlife is not a threat to domestic animals in this controlled setting with vaccination, fencing and movement control.


Assuntos
Brucelose Bovina/epidemiologia , Animais , Animais Domésticos , Animais Selvagens , Brucella abortus/isolamento & purificação , Brucella melitensis/isolamento & purificação , Brucelose/epidemiologia , Brucelose/veterinária , Bovinos , Estudos Transversais , Doenças do Cão , Cães , Feminino , Cabras , Masculino , Saúde Única , População Rural , Estudos Soroepidemiológicos , África do Sul/epidemiologia , Vacinação/veterinária , Zoonoses/epidemiologia
16.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808159

RESUMO

The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.


Assuntos
Brucelose/imunologia , Interações Hospedeiro-Patógeno , Interferon gama/imunologia , Macrófagos/imunologia , Receptores de Interferon/imunologia , Baço/imunologia , Animais , Antibacterianos/farmacologia , Linfócitos B/imunologia , Linfócitos B/microbiologia , Brucella abortus/efeitos dos fármacos , Brucella abortus/imunologia , Brucella abortus/patogenicidade , Brucella melitensis/efeitos dos fármacos , Brucella melitensis/imunologia , Brucella melitensis/patogenicidade , Brucella suis/efeitos dos fármacos , Brucella suis/imunologia , Brucella suis/patogenicidade , Brucelose/tratamento farmacológico , Brucelose/genética , Brucelose/microbiologia , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Quimiocina CCL21/imunologia , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Doença Crônica , Regulação da Expressão Gênica , Interferon gama/genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Rifampina/farmacologia , Transdução de Sinais , Baço/microbiologia , Estreptomicina/farmacologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Receptor de Interferon gama
17.
Front Immunol ; 8: 903, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824630

RESUMO

This study develops an original co-infection model in mice using Brucella melitensis, the most frequent cause of human brucellosis, and Trypanosoma brucei, the agent of African trypanosomiasis. Although the immunosuppressive effects of T. brucei in natural hosts and mice models are well established, we observed that the injection of T. brucei in mice chronically infected with B. melitensis induces a drastic reduction in the number of B. melitensis in the spleen, the main reservoir of the infection. Similar results are obtained with Brucella abortus- and Brucella suis-infected mice and B. melitensis-infected mice co-infected with Trypanosoma cruzi, demonstrating that this phenomenon is not due to antigenic cross-reactivity. Comparison of co-infected wild-type and genetically deficient mice showed that Brucella elimination required functional IL-12p35/IFNγ signaling pathways and the presence of CD4+ T cells. However, the impact of wild type and an attenuated mutant of T. brucei on B. melitensis were similar, suggesting that a chronic intense inflammatory reaction is not required to eliminate B. melitensis. Finally, we also tested the impact of T. brucei infection on the course of Mycobacterium tuberculosis infection. Although T. brucei strongly increases the frequency of IFNγ+CD4+ T cells, it does not ameliorate the control of M. tuberculosis infection, suggesting that it is not controlled by the same effector mechanisms as Brucella. Thus, whereas T. brucei infections are commonly viewed as immunosuppressive and pathogenic, our data suggest that these parasites can specifically affect the immune control of Brucella infection, with benefits for the host.

18.
Vet Immunol Immunopathol ; 189: 17-27, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28669383

RESUMO

Paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis (Map), is a chronic granulomatous enteritis which primarily affects domestic and wild ruminants, resulting in serious economic losses for dairy and beef industry around the world. There is no satisfactory cure or vaccine, and actual diagnostic tests need improvement, particularly for the initial stages of the disease. Map specific cell-mediated immune responses may allow early detection of the infection at subclinical stages. In this study, over a period of 39 months, we collected 548 blood samples in two culture-confirmed Map-infected herds, 95 blood samples in five dairy herds that scored negative during 3 consecutive years of Map serology testing and 79 samples in three culture-confirmed M. bovis infected herds. Based on criteria of bacteriology, serology and ratio of IFN-γ induced with bovine and avian purified protein derivative of tuberculin (PPD-B/PPD-A), we classified the samples in four groups: 415 samples as Map-exposed/infected (MAP), 58 samples as aspecific reactors (AR), 179 samples as non-responders (NI) and 70 samples as M. bovis infected (TB). Age of the animals influenced the IFN-γ response in the MAP group, with PPD specific IFN-γ levels (but not PPD-B/PPD-A IFN-γ ratio) being significantly higher in animals <18 months of age. Map specific antibodies were detected by IDEXX ELISA in 13/415 (3%) sera of the MAP group, whereas fecal culture was positive for only 7/405 (1.7%) samples. Animals in the MAP group could therefore be considered being at the very early stage of Map infection. Six purified, recombinant Map antigens (Ag5, Ag6, MAP1637c, MAP0388, MAP3547c and MAP0586c), previously identified using combined advanced proteomic or reverse genomic approaches, were tested for their diagnostic potential in a 20h IFN-γ release assay. In the age group >18 months old, Ag5 and MAP0388 were recognized by only 10.1% and 7.7% of the animals in the MAP group, whereas a total of 38.6.%, 29.4%, 25.6% and 39.0% of the animals in the MAP group reacted to Ag6, MAP1637c, MAP3547c and MAP0586c respectively. None of the animals in the TB group reacted to Ag6, MAP1637c or MAP586c. Except for MAP0388, the % of reactors in the MAP group was significantly higher in animals <18 months old: 28.0%, 24.0%, 45.5%, 47.1%, 49.8% and 47.4% respectively. Further studies of these candidates and their combination are needed to confirm their diagnostic potential for the detection of early Map infection.


Assuntos
Antígenos de Bactérias/imunologia , Doenças dos Bovinos/diagnóstico , Testes de Liberação de Interferon-gama/veterinária , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/diagnóstico , Animais , Bélgica , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Fezes/microbiologia , Feminino , Paratuberculose/imunologia , Proteínas Recombinantes
19.
Front Microbiol ; 8: 1088, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659902

RESUMO

Erythritol is the preferential carbon source for most brucellae, a group of facultative intracellular bacteria that cause a worldwide zoonosis. Since this polyol is abundant in genital organs of ruminants and swine, it is widely accepted that erythritol accounts at least in part for the characteristic genital tropism of brucellae. Nevertheless, proof of erythritol availability and essentiality during Brucella intracellular multiplication has remained elusive. To investigate this relationship, we compared ΔeryH (erythritol-sensitive and thus predicted to be attenuated if erythritol is present), ΔeryA (erythritol-tolerant but showing reduced growth if erythritol is a crucial nutrient) and wild type B. abortus in various infection models. This reporting system indicated that erythritol was available but not required for B. abortus multiplication in bovine trophoblasts. However, mice and humans have been considered to lack erythritol, and we found that it was available but not required for B. abortus multiplication in human and murine trophoblastic and macrophage-like cells, and in mouse spleen and conceptus (fetus, placenta and envelopes). Using this animal model, we found that B. abortus infected cells and tissues contained aldose reductase, an enzyme that can account for the production of erythritol from pentose cycle precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA